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Acoustic emission associated with the bursting of a gas bubble at the free surface
of a non-Newtonian fluid
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We report experimental measurements of the acoustic emission associated with the bursting of a gas bubble
at the free surface of a non-Newtonian fluid. On account of the viscoelastic properties of the fluid, the bubble
is generally elongated. The associated frequency and duration of the acoustic signal are discussed with regard
to the shape of the bubble and successfully accounted for by a simple linear model. The acoustic energy
exhibits a high sensitivity to the dynamics of the thin film bursting, which demonstrates that, in practice, it is
barely possible to deduce from the acoustic measurements the total amount of energy released by the event.
Our experimental findings provide clues for the understanding of the signals from either volcanoes or foams,
where one observes respectively, the bursting of giant bubbles at the free surface of lava and bubble bursting

avalanches.
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I. INTRODUCTION

A host of broad-interest phenomena involve bursting
bubbles at fluid surfaces. In daily life, jam or purée cooking
produces sonic bubbles that can project fragments at burst-
ing. In the geophysical context, giant bubbles bursting at the
top of a volcano vent, or at the surface of a lava lake, are
examples whose understanding might be crucial for predict-
ing volcanic activity [1,2]. Although less considered, bubble
bursting also occurs at the surface of aqueous foams [3] typi-
cally produced by wash or beauty products or even by
poured beer. The analysis of acoustics emission is then a
natural way of investigating bursting systems, revealing the
collapse or bursting mechanism and properties of the fluid
gas mixture [4-9].

On the one hand, various statistical analysis of bursting
noise have been carried out [6,7,10]. For instance, the sound
pattern of collapsing foams was recently analyzed, revealing
a log-normal distribution for the energy of events. For the
events of highest acoustic energy, the distribution is however
a power law suggesting that a “wide variety of bubble mem-
branes areas are exploding” [7]. Consistently, the film rup-
ture event seems to be independent of the bubble size and
exhibits instead a correlation in space due to cascade burst-
ing [9]. In turn, the typical frequency of the acoustic signal
has been statistically correlated with the bubble size [7,10].
The acoustic emission of a single standing spherical bubble
has been recorded as well [10] and sophisticated high speed
techniques have been used to elucidate the bursting dynam-
ics of spherical smectic films [11]. However, detailed corre-
lations of high speed images of foam bursting-films with the
features of the acoustic emission have not yet been per-
formed.

On the other hand, volcanologists have recorded the
sound produced by astounding burstings, and have tried to
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infer, from the signal characteristics, the dynamical processes
involved in these natural phenomena [12]. Previous labora-
tory experiments have intended to reproduce bubbles forma-
tion, rising and bursting in geometries presenting similarities
with bubbles in magma conduit or lava lakes [13,14]. Since
the forces applied on lava have a time scale much larger than
its relaxation time (about 4 X 1078 s for Strombolian magma
[15]), most of model experiments have been performed in
Newtonian fluid [13,14,16]. However, departure from this
Newtonian behavior can occur if the magma contains crys-
tals [16], which can be observed, for example, on Strombo-
lian ejecta [17]. Some experiments, performed in more “ex-
otic” fluids, such as japanese curry or tomato sauce, have
demonstrated the complex behavior of such fluids, and
brought to the fore the nontrivial physical processes leading
to sound generation—from Helmholz resonator type to
bubble oscillation inside the fluid [18].

To understand the geometrical and dynamical aspects of
sound produced by bursting bubbles having an elongated
shape, we described recently the acoustic emission from an
overpressurized cylindrical cavity, closed at one end by a
fluid film [19]. We showed that the cavity geometry governs
the frequency, the viscous dissipation and radiation are re-
sponsible for the wave damping and the acoustic energy de-
pends not only on the energy initially loaded inside the cav-
ity but also on the characteristic time associated with the film
bursting.

Here, we present the analysis of the high-frequency
acoustic wave emitted by a bubble bursting at the free sur-
face of a non-Newtonian fluid. In such fluids, the complex
rheology [20] is the source of puzzling phenomena including
surface instabilities due to elastic effects [21], cusp at the tail
of elongated rising bubbles [20,22-24], and oscillations of
falling spheres or rising air bubbles [25-27]. We choose an
experimental situation in which the bubble, generally elon-
gated, exhibits a nearly conical steady shape during the rise
toward the free surface. When the bubble reaches the free
surface, a liquid film separates the bubble body from the
surrounding air. This film thins, eventually breaks, and can
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FIG. 1. Bursting event in the fast camera. (a) Initially, the bubble sits at the free surface. The film at the top is thinning due to the
drainage. (b) The thin film suddenly breaks. One observes, in this specific example, that the film tears at its base. (c) As a result of the
outgoing air flow and of the capillary forces, the remaining part of the bubble head is blown upwards and shrinks. The width of each image
is 3 cm whereas the time difference between them is 0.8 ms. Here, the acoustic emission associated with the event does not last more than
2 ms, during which the bubble body clearly does not significantly deform.

display a complex behavior (see, for instance, [28-31] for
viscous films, and [32,33] for soap films).

In the chosen experimental conditions, due to the non-
Newtonian fluid properties, the bubble body does not signifi-
cantly deform during the bursting event. We first link the
characteristics of the radiated sound with bubble volume and
shape, which is governed by the rheological properties of the
fluid. Despite the conical shape of the bubbles, acoustic sig-
nals show a narrow frequency spectrum whose characteristic
wavelength is linear in the bubble length, exhibiting a well-
defined offset that is due to acoustic radiation [34]. Both the
results are theoretically explained using linear acoustics
[35-37]. Differences and similarities with the Newtonian-
fluid case are underlined. We then show that, if the rupture
time of the viscoelastic film does not control the wave gen-
eration (i.e., it is fast enough), an optimal size for a sonic
bubble exists: The largest amplitude of the acoustic signal is
recorded for a bubble having this optimal size.

We then show that, without a detailed knowledge of film-
bursting dynamics, acoustic measurements are not a reliable
method to access the total amount of energy released. In-
deed, the amount of the energy transferred to the acoustic
wave drastically depends on the characteristic time associ-
ated with the opening of the bubble [19], which is not con-
trolled experimentally. This result might find interesting ap-
plications to aqueous foams as well, indicating that the
statistics of energy released by bubble bursting avalanches,
recently characterized by acoustic emission [7], might be not
only influenced by the distribution of the bubble sizes, but
also by that of the rupture times. Consistently, our results
suggest that bursting cascades might be triggered more likely
by silent bubbles than by noisy ones. In this case, most of the
potential energy loaded inside the cavity would contribute to
larger distortions of bubble network.

II. EXPERIMENTAL SETUP AND PROCEDURE

The experimental setup consists of a vertical plexiglas
container (square section 30 X 30 mm, height 88 mm) filled
with a transparent non-Newtonian fluid up to the upper
plane. Thanks to the transparent and planar walls of the con-
tainer, the fluid can be imaged from the side without any
optical distortion by means of a fast camera (HiSIS 2002,
KSV Instruments Ltd., up to 1220 images/s, Fig. 1).

In order to produce bubbles having a well-defined volume
V (from 0.1 to 1.5 mL), a chosen amount of air is rapidly
injected by means of a syringe pump connected to the con-

tainer by a hole drilled at the center of the lower plane. After
injection, the bubble rises in the fluid, reaches the upper free
surface (Figs. 1 and 2) and finally bursts, producing a char-
acteristic audible sound.

To characterize this phenomenon, we record the acoustic
emission by means of a microphone (ATM33a, Audio Tech-
nica associated with a preamplifier, Eurorack UB802) which
is located 3 cm away from the gel free surface, with a 45°
inclination from the vertical. The position of the microphone
shall remain identical for all the experimental results re-
ported herein.

The chosen non-Newtonian fluid is obtained by diluting a
commercial hair-dressing gel (Gel fijador de cabello, for
men, Camel White®) in pure water. This latter choice is
mainly justified by the fact that, in such a fluid, the air
bubbles usually exhibit a nice vertically elongated shape, ter-
minated by a cusp at the bottom, which significantly differs
from the rounded shape usually observed in a Newtonian
fluid [20]. In addition, one can easily be supplied with large
quantities of fluid, reproducible mixtures are rather easy to
prepare and they are stable in the time. The non-Newtonian
character of the fluid is more or less pronounced depending
on the concentration, ¢, of gel in the mixture (from 25% to
40% in volume). All the solutions are obtained after the mix-
ing of the two components during 6 hours by means of a
magnetic stirrer. Afterwards, the small bubbles that still re-
main trapped in the fluid are eliminated by placing the solu-
tion in an ultrasonic bath for several hours. In order to avoid
any memory effect, the gel is stirred and let at rest for a few
minutes between two bubble rises. The mixtures are likely to
be subjected to drying: In order to avoid any significant
change in the overall concentration ¢, each sample is used
only for 4 days.

III. PRELIMINARY OBSERVATIONS: BUBBLE
SHAPE AND BURSTING DYNAMICS

Before analyzing in details the acoustic emission associ-
ated with the bursting of a single bubble at the free surface,
one must first pay attention to the bubble shape and dynam-
ics.

First, depending on the concentration ¢ and on the volume
V, one observes two qualitative different steady shapes of the
bubbles which rise up in the bulk of the fluid. Indeed, for low
gel concentration (typically ¢ <30%), the bubbles exhibit an
almost spherical shape, similar to that observed in Newton-
ian fluids. On the contrary, for larger concentration (typically
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FIG. 2. Images of the bubble right before bursting and associated acoustic signals. In the images (scale bar, 1 cm), one notices that the
bubbles are more elongated when the gel concentration c is larger. In addition, we report the signal from the microphone. We observe that
the typical frequency decreases and the characteristic duration of the acoustic emission increases when the bubble length is increased.

¢>30%), the bubbles exhibit an elongated shape with a
cusped tail, as already observed in non-Newtonian fluids
[20,22-24]. During the rise, one also notices oscillations in
the bubble shape, as previously pointed out in the literature
[27].

The shape of the bubble which bursts at the free surface
qualitatively exhibits almost the same transition. For small
concentration ¢, one observes a rounded bubble on the last
image previous to the bursting [Fig. 2(a)] whereas, for a
larger concentration ¢, a cusp is clearly observed [Fig. 2(d)].
However, we point out that at intermediate concentration
(typically ¢ ~30%) the shape of the bubble, when bursting,
also depends on its dynamical behavior when reaching the
free surface and, thus, on its volume V: For small volume
(V<0.25 mL), only rounded bubbles are observed whereas,
for large volume (V>0.40 mL), the bubbles always exhibit
a cusp; in the intermediate range (0.25=V<0.40 mL), both
types of bubbles can be observed for the same volume V.
Qualitatively, the capillary forces are large enough to main-
tain the small bubbles in equilibrium at the free surface so
that a bubble, which initially exhibits a cusp while rising,
deforms and equilibrates before the thin film that encloses
the inside air breaks due to the drainage. No cusp is then
observed. On the contrary, the capillary forces are not large
enough to maintain the largest bubbles in equilibrium at the
free surface. As a consequence, the tail of the bubble does
not significantly deform at the free surface before the thin
film at the top breaks, due to the increase of its surface area
and not to the drainage, in this case. A cusp is thus system-
atically observed. In the intermediate case, the capillary
forces are likely to maintain the bubble at the free surface
but, because of some premature ruptures of the thin film at
the top, one can observe a bubble exhibiting either a rounded
bottom or a cusp.

The equilibrium shape or the dynamical behavior of the
bubble at the free surface, which would deserve an extensive
study to be accounted for, are not the aim of the present

work. From the qualitative description of the bubble behav-
ior at the free surface presented above, we shall only remem-
ber that the bubbles are elongated and exhibit a cusp in most
of the experimental conditions and that, depending on the
volume, the thin film at the top might break either because of
the drainage or of the increase in its surface area. In what
follows, we shall only analyze the acoustic signal associated
with the bursting event with regard to the shape and dynam-
ics of the bubble at the free surface.

IV. ACOUSTIC SIGNAL

The bursting event is systematically associated with the
emission of a sound wave, characterized by a well-defined
frequency (Fig. 2).

Qualitatively, the sudden bursting of the thin film at the
top excites a resonant pressure wave in the bubble body
which is initially overpressurized. The phenomenon is simi-
lar to that thoroughly described in Ref. [19], where the
acoustic emission associated with the bursting of a thin soap
film that initially closes a cylindrical overpressurized cavity
is analyzed in detail. In our experimental case, due to the
viscoelastic properties of the fluid, the bubble body is gener-
ally elongated and the bubble wall does not significantly de-
form during the characteristic duration of the sound emission
(Fig. 1). The opened bubble body thus selects resonant
modes among which the fundamental is the most intense.
Due to the radiation at the open end, one records outside the
cavity a sound wave exhibiting well-defined frequency and
duration which are the subject of the analysis presented be-
low.

A. Acoustic wavelength

In Fig. 3, we report the wavelength, \, associated with
the acoustic wave in air as a function of the bubble length,
L, as defined in Fig. 4. Taking the whole set of the experi-
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FIG. 3. Wavelength N\ vs bubble length L. The resonant wave-
length increases linearly with the bubble length, estimated from the
open aperture to the tail. The offset A\, is accounted for by the
radiation at the open end.

mental data obtained for different gel concentration c¢
and bubble volume V into account, one observes experi-
mentally that N increases almost linearly with L according to
N=Np+(2.8+0.1)L with \q=(1.6%0.1) cm. The experi-
mental slope d\/dL=2.8 deserves to be contrasted with the
slope d\/dL=4 obtained in the case of a cylindrical cavity
[19,36]. In the same way, a straightforward analysis of the
acoustic problem leads to d\/dL=2 in the case of a conical
cavity. In order to account for the experimental slope, let us
now consider the acoustic wave inside the bubble, taking
into account the cusp at the tail and the overall shape of the
cavity.

Because of the cusp at the tail, the bubble body resembles
a cone. As a consequence, we shall work in a system of
spherical coordinates centered in O, at the cusp. Let M be a
point of the bubble wall. The shape of the bubble, assumed
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FIG. 4. (a) Image of a bubble and definitions. The dotted curve
corresponds to the proposed interpolation of the bubble profile by
a(r)=aq cos(B7) with ag=0.378 and B=1.11. (b) Slope Z—I)i VS ap
for different ratio % The slope Z—I)i is obtained from the solution of
Eq. (1) taking into account the profile of the bubble wall. The full

diamond corresponds to the bubble in (a).
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to be axisymmetric, can be accounted for by the angle a(r)

between the vector OM and the symmetry axis [r= OM, Fig.
4(a)]. For instance, a conical bubble would be described by
a(r)=ay, a constant. In a first approximation, assuming that
the variation of the bubble cross section does not depend too
rapidly (in comparison to the wavelength) on the radius r, we
can write the equation for the pressure field P(r,r), assumed
to depend only on the distance r,

1 PP(r.1) _li< 2&P(r,t)>
2 2~ 2 r
v ot reor ar

%%{ln[l —cos a(r)]}, (1)

where v stands for the velocity of the sound in air. The Eq.
(1), written in spherical coordinates, governs the propagation
of a pressure wave in an acoustic horn [36,37] whose profile
is described by the function «(r). First, a velocity node lo-
cates at O. Second, neglecting the radiation at the open end,
we can, in a first approximation, assume that a pressure node
locates in the plane of the aperture [P(L)=0, note here that
the condition of zero pressure in the output plane is not com-
patible with the geometry of the pressure field. However, in a
first approximation, to within a term of the order of ®/L,
where @ stands for the aperture diameter, this assumption
provides a good estimate of the resonant wavelength.] For
instance, in the case of a conical cavity (a=a), the solution
at the frequency w is P(r,f)= %ej ®! with kL=, which
leads to N=2L for the fundamental (k= ZT”). Experimentally,
the bubble is not conical and its profile is successfully inter-
polated by the phenomenological function a(r)=aq cos(87),
where a denotes half the angle at the bubble tail [Fig. 4(a)].
In this case, Eq. (1) must be solved numerically. The coeffi-
cient B accounts for the diameter @ of the aperture at the top
surface, according to « cos[ 8Y1 +(%)2]=arctan(2q—z). In Fig.
4(b), we report the slope % as a function of a for different

values of the ratio ®/L. For instance, one obtains Z_}i =2.8 for
1

ap=7 and %:5’ and %:2.9 for ap=% and %:}1, which
corresponds to the typical values of these two parameters in
our experimental conditions. Thus, in spite of the slight de-
pendence of the slope % on the ¢ and ®/L, the experimen-
tal wavelength \ is observed to depend almost linearly on the
bubble length L with %:2.8 for the whole set of experi-
mental data reported in Fig. 3.

However, the simple acoustic model presented above fails
in accounting for the finite offset A\p=1.6 cm clearly ob-
served in Fig. 3. As already pointed out, we arbitrarily as-
sumed that a pressure node locates in the plane of the open
end of the bubble, this latter condition being incompatible
with the geometry of the pressure field inside the bubble. In
order to recover the value A\ of the offset, one must consider
the diffraction of the sound wave by the aperture. Indeed, the
boundary condition in the output plane is imposed by the
continuity of the pressure and velocity fields in this very
plane, and one must also consider the acoustic wave outside
the cavity. The structure of the acoustic wave resulting from
the diffraction of a planar wave by a circular aperture (diam-
eter ®) has been determined by several authors. As a result,
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FIG. 5. Characteristic duration of the sound emission 7, in num-
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demonstrates that the damping of the acoustic signal is mainly gov-
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to the first order in ®/\, one obtains the acoustic impedance
of the outer acoustic wave Z,,,= {jk®, where §—— for a
flanged aperture [37] and {=0.3 for an unflanged aperture
[34]. In the case of the diffraction of a spherical wave, we
expect these results to hold true [the correction due to the
curvature of the pressure field is expected to be of the order
of (%)2.] In addition, we can estimate the acoustic impedance
of the inner acoustic wave, Z;,, by calculating the average
pressure and velocity in the aperture plane from the solution
of Eq. (1), the boundary condition at O being taken into
account. Then, insuring the continuity of the pressure and
velocity fields in the aperture plane, one can determine the
resonant wavelength A. In the case of a conical cavity, writ-
ing Z,,/(pv) = {jk®, one obtains N\=2L+2m{®P. Thus, in
the case of a conical cavity and of a flanged aperture, we
estlmate )\0—-¢> (We remind here that one would expect

—<D for a cylindrical cavity [19].) In the case of the
bubble the impedance Z;, must be evaluated numerically as
Eq. (1) does not exhibit any simple analytical solution. Here,
we only aim at elucidating the physical origin of the offset
N\o- As a consequence, we only point out that, if due to the
radiation at the open end, we expect \y=(1.5*0.5) cm for
the experimental range of the aperture diameter
(®E[0.4,0.7] cm). From the agreement of this last estimate
with the experimental value of A, we conclude that the off-
set originates from the radiation of the resonant acoustic
wave at the open end.

B. Damping of the acoustic signal

In order to account for the damping of the acoustic wave,
we report in Fig. 5 the typical duration, in number of periods,
n, of the acoustic signals. This choice is explained by the
difficulty in defining precisely the signal duration because of
the rather complex envelope of the acoustic signal. For an
exponential decay over the characteristic time 7, we would
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expect n= n0+ > S0 that the experimental value of n pro-
vides an estimate of the characteristic time 7 to within an
offset. The damping of the acoustic signal might be governed
by several physical processes, among them the partial reflec-
tion at the cusp, the viscous dissipation at the side walls, and
the diffraction at the open end. Each of the processes would
lead to a different dependence of the duration on the geom-
etry of the bubble. The partial reflection at the cusp would
lead to constant wT whereas the viscous dissipation would
lead to w7 * PVw [19] and, thus, to a decrease in n for
increasing L. On the contrary, one observes experimen-
tally an increase in n with the bubble length L. In order to
account for the radiation, we can further expand the acoustic
impedance Z,, to the second order in k® and write
Zou! (pv) = jk® + E(kD)?, where £ is a constant. For the ra-
diation of a planar wave at a flanged (respectively, un-
flanged) aperture, 5:% (respectively, %) [34,37]. As already
mentioned, we expect the curvature of the wave front to
slightly alter the value of the impedance to within a term of
the order of (¢/L)? but we do expect & to remain of the same
order. The solution of Eq. (1), taking into account the bound-

ary condition at the open end, then leads to wr—gﬁ and
thus to n=ng++ 5 ﬂz 32+ Our measurements are not accurate
enough to make it possible to determine the experimental
slope é but we point out that they are compatible with the
value §=% (Fig. 5). We can thus conclude that the damping
of the acoustic signal is mainly governed by the radiation at
the open end of the bubble.

C. Acoustic energy

At this point, it is particularly interesting to focus on the
energy associated with the acoustic emission. From the pres-
sure signal, P(¢), provided by the microphone, one can esti-
mate the total amount of energy released in the acoustic sig-
nal at the fundamental frequency, E,. Assuming that the
acoustic wave outside the bubble is almost spherical, cen-
tered at the bubble aperture, in the half-space above the free
surface, we can write the following:

2ad®
E,~ " f P()?d1, 2)
pv - Ji=o

where, we remind, d stands for the distance from the micro-
phone to the bubble aperture. As E,, is expected to depend on
the volume V and of the initial overpressure 6P of the air
inside the bubble before the bursting, let us now consider an
estimate of the total amount of released energy, E7, assuming
a rapid expansion of air,

1VspP?
Er= - 3)
2 pv?
Experimentally, the volume V is obtained from the injected
volume of air but the overpressure OP is rather difficult
to estimate. However, we measured the surface tension
v=(25%5) mN/m of the gel-water interface for all concen-
trations ¢ and we can estimate the tension of the thin film at
the top, previous to the bursting event, to be about 2y. Mea-
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The experimental results clearly demonstrate that the bubbles can
be separated in two categories: Small bubbles that sit at the free
surface before bursting (open symbols) and larger ones that cross
the interface without stopping (full symbols).

suring the radius of curvature of the bubble head, R, from
the image, we can estimate 6P =4+/R. We point out that the
corresponding value of E; must be considered with caution
(Laplace’s law might not be valid for bubbles bursting with-
out reaching equilibrium at the free surface). However, it
makes possible to estimate—and therefore, to further
discuss—the energy of the acoustic emission.

We report first E,/Ey as a function of the bubble volume
V (Fig. 6). One clearly observes that the data points are
widely distributed, which indicates that the acoustic energy
E, does not image the total amount of energy released by the
bursting event, E;. However, the envelope of the data points
indicates that, at intermediate volume, in some cases, a large
part of E is transferred to the acoustic mode, which explains
why some of the bubbles are so loud whereas others are
barely audible. As already discussed in Ref. [19], the transfer
of the energy initially loaded in the bubble to the acoustic
modes is mainly governed by the characteristic time associ-
ated with the rupture of the bubble head: The opening of the
cavity is efficient in exciting the inner resonant modes only if
rapid enough. For the smallest volumes, the bubble rises and
stops at the free surface. The film that closes the cavity bursts
after drainage. Even small, the characteristic time associated
with the cavity opening is long compared to the acoustic
period because the bubble body is very short. As a conse-
quence, E,/Ey is relatively small. In the opposite limit, the
bubbles are large and cross the interface without stopping.
The bursting results from the breaking of the bubble head
which is torn apart due to the bubble dynamics. In this case,
the film is not as thin as one would obtain as the result of the
drainage and the characteristic opening time is long com-
pared to the period associated with the resonant modes, even
if the bubble body is long. Again, the ratio E,/Ey is rela-
tively small. The optimal conditions are reached when the
volume of the bubble is such that the bubble crosses the
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interface slowly enough for the film to have time to thin but
rapidly enough for the bubble tail not to disappear (this leads
to a significant increase of the resonant frequency). This lat-
ter conclusion is supported by the data reported in Fig. 6,
inset. One observes, reporting E,/E; as a function of the
resonant frequency w, that the data can be separated in two
groups: Bubbles that sit at the interface before bursting and
bubbles that cross the interface without stopping. We clearly
note that E,/E; is maximum for bubbles crossing dynami-
cally the free surface.

From these remarks on the acoustic energy, we would like
to point out that the acoustic energy in the fundamental mode
drastically depends on the dynamics of the thin film rupture
and that, as a consequence, measuring the acoustic energy is
not enough for obtaining a good estimate of the total energy
release.

V. CONCLUSION

Motivated both by the will to understand the physical pro-
cesses involved when a bubble bursts at the surface of a
non-Newtonian fluid, and the hope to use the acoustics as a
tool to investigate, on natural systems such as volcanoes, the
relationship between the acoustic wave and the rheological
properties of lava, we have investigated the bursting of
bubbles at the free surface of a gel solution, diluted at dif-
ferent concentration.

We have shown that, at large enough gel concentration,
the bubble, which is elongated, acts as a motionless resonator
and, thus, exhibits a well-defined acoustic frequency at burst-
ing. The amplitude of the acoustic wave emitted at bursting
depends on various parameters: Gel concentration, volume
of the bubble, and film rupture time. In spite of the observed
clear transition between a static regime, where the small-
volume bubble remains trapped at the surface, and a dynami-
cal regime, where the high bubble-rising velocity makes the
bubble go through the surface and burst directly, the problem
remains rich and complex, in particular, due to the unpredict-
able film rupture time, which directly influences the ampli-
tude and energy of the acoustic signal.

From a practical point of view, we can raise the following
question: What pieces of information can we infer from
acoustic measurements, if they are the only available data?
From our study, we can conclude that the frequency of the
signal gives a direct access to the bubble length. However,
any attempt to interpret the amplitude and energy of the
acoustic signal would surely lead to strong misinterpretation.
Indeed, we have shown that the same experimental condi-
tions (gel concentration, bubble volume) can lead to com-
pletely different acoustic signals at bursting, due to the high
sensitivity to the film bursting dynamics.
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